Increase of enzyme activity through specific covalent modification with fragments.
نویسندگان
چکیده
Modulation of enzyme activity is a powerful means of probing cellular function and can be exploited for diverse applications. Here, we explore a method of enzyme activation where covalent tethering of a small molecule to an enzyme can increase catalytic activity (kcat/KM) up to 35-fold. Using a bacterial glycoside hydrolase, BtGH84, we demonstrate how small molecule "fragments", identified as activators in free solution, can be covalently tethered to the protein using Michael-addition chemistry. We show how tethering generates a constitutively-activated enzyme-fragment conjugate, which displays both improved catalytic efficiency and increased susceptibility to certain inhibitor classes. Structure guided modifications of the tethered fragment demonstrate how specific interactions between the fragment and the enzyme influence the extent of activation. This work suggests that a similar approach may be used to modulate the activity of enzymes such as to improve catalytic efficiency or increase inhibitor susceptibility.
منابع مشابه
Increase of enzyme activity through specific covalent modification with fragments† †Electronic supplementary information (ESI) available: Description of the experimental methods, chemical synthesis and analysis, details of the results and supplementary figures and tables. See DOI: 10.1039/c7sc01966a Click here for additional data file.
متن کامل
Irreversible inhibitors of the 3C protease of Coxsackie virus through templated assembly of protein-binding fragments
Small-molecule fragments binding to biomacromolecules can be starting points for the development of drugs, but are often difficult to detect due to low affinities. Here we present a strategy that identifies protein-binding fragments through their potential to induce the target-guided formation of covalently bound, irreversible enzyme inhibitors. A protein-binding nucleophile reacts reversibly w...
متن کاملکاربرد نانوذرات مغناطیسی آهن اکسید در فرآیند تثبیت بیومولکولهای زیستی
Introduction: Because of their unique properties, magnetic nanoparticles have attracted the attention of many researchers in various fields. The stabilization enzyme on functionalized magnetic nanoparticles, with the maintenance of free protein activity and optimal stability, have been developed by various surface modification techniques. This review focused on the methods for modificatio...
متن کاملInfluence of a Novel Magnetic Recoverable Support on Kinetic, Stability and Activity of Beta-amylase Enzyme
In this paper, covalent immobilization of beta amylase enzyme on the surface of modified magnetic nano particles (ZnFe2O4@SiO2-NH2) is reported. For doing so, at first, the magnetic nanoparticles of ZnFe2O4 were synthesized by chemical co-precipitation method and then tetraethyl orthosilicate (TEOS) and 3-aminopropyltriethoxy sil...
متن کاملMechanisms of hormone action.
Circulating hormones play an important role in regulating the flux through metabolic pathways. In general, hormones regulate either the activity of key enzymes of metabolism or the activity of protein transport systems such as those found in the plasma membrane and in the inner mitochondrial membrane. Little is known about the mechanism of action of hormones on transport systems, so the discuss...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chemical science
دوره 8 11 شماره
صفحات -
تاریخ انتشار 2017